School Science Review – December issue

      No Comments on School Science Review – December issue

Look out for the December edition of School Science Review – which is a special issue on Epistemic Insight.

The theme for this issue is Epistemic Insight. This focuses on the nature of knowledge – and what it means to be clued up and wise about how knowledge works. Increasingly the kinds of questions that matter to individuals and society are ones that come from the frontiers of science and engineering such as ‘can a robot have a conscience?’. These questions are not straightforward to place in an educational sense, because they bridge science and the humanities. In this issue, guest editors Berry Billingsley and Mark Hardman invite us to read a range of perspectives on what this can and does mean for the science teacher and classroom.

Read summaries of some of the articles here:

https://www.ase.org.uk/journals/school-science-review/2017/12/367/

Theme editorial: epistemic insight and the power and limitations of science in multidisciplinary areas

Berry Billingsley and Mark Hardman

The June 2017 special issue of School Science Review focused on epistemic insight. Epistemic insight in its broadest sense refers to having the attitudes and understandings that are associated with thinking and working like a scholar. Someone with epistemic insight has a deep understanding of how knowledge works. In the months since, a widening cohort of researchers, practitioners and policy makers have begun to discuss the importance of epistemic insight as a dimension of students’ intellectual development.

 
19 You must be a member to download this article Breaking the cycle: interrupting the perpetuation of erroneous ideas about the nature of science in the educational system

Keith Chappell

In the context of what are often highly compartmentalised curriculum requirements, this article considers the cyclical nature of the acquisition and transfer of knowledge in the education system in relation to those questions that transcend individual subjects as set out in traditional curriculum divisions. It also considers the detrimental consequences of this across the curriculum for all subjects and seeks to identify ‘pinch points’ at which interventions might most effectively be introduced to break the cycle of knowledge compartmentalisation, and allow those questions that do not sit simply within a single subject to be handled in a meaningful way. Particular examples from the teaching of genetics are used to illustrate the broader issue that affects science education across all fields. Finally, in seeking to break this cycle of perpetuated errors there are opportunities to offer new modes of thinking about the relationship of science with other ways of thinking that move beyond the simplistic notions of conflict embedded in many discussions, such as those relating to science and religion.

26 You must be a member to download this article Entrenched compartmentalisation and students’ abilities and levels of interest in science

Berry Billingsley, Mehdi Nassaji and Manzoorul Abedin

This article explores the notion that asking and exploring so called ‘big questions’ could potentially increase the diversity and number of students who aspire to work in science and science related careers. The focus is the premise that girls are more interested than boys in the relationships between science and other disciplines. The article also examines the view that the practice of entrenched compartmentalisation is squeezing students’ curiosity and channelling their thinking away from creative activities such as identifying good questions to ask and devising ways to address them. Based on their findings, the authors suggest that entrenched compartmentalisation could be a barrier in schools to students’ intellectual progression and to students’, particularly girls’, interest in science.

32 Dual reality

Matt Pritchard

Magicians and scientists have a curious relationship, with both conflicting views and common ground. Magicians use natural means to construct supernatural illusions. They exploit surprise and misdirected focus in their tricks. Scientists like to deconstruct and explain marvels. They methodically measure, evaluate and repeat observations. However, at the core of both is a shared sense of wonder and the drive to share that with their audiences.

34 You must be a member to download this article How scientific is that? A practical guide to discuss the power and limitations of science in secondary schools

Martin Coath

This article describes a workshop designed to help students to ascertain the relative difficulty and amenability to scientific investigation of various questions. Group discussions are used to illustrate that some questions do not have a right answer, which is not a normal expectation in science lessons.

38 You must be a member to download this article The mystery tubes: teaching pupils about hypothetical modelling

Carole Kenrick

This article recounts the author’s working experience of one method by which pupils’ understanding of the epistemologies of science can be developed, specifically how scientists can develop hypothetical models and test them through simulations. She currently uses this approach for transition lessons with pupils in upper primary or lower secondary school (ages 7–14), but has also used it in the past with pupils aged up to 18 years.

44 You must be a member to download this article Epistemic insight and Classrooms with Permeable Walls

Berry Billingsley and Andrea Ramos Arias

The boundaries between subject disciplines in secondary education today make it difficult for students to see their subjects in context. However, examining the secondary curriculum in England shows that there are a wealth of opportunities for making links and helping to develop students’ epistemic insight and scholarly thought. This article provides concrete examples of these opportunities and offers a view into ongoing research by the LASAR Centre at Canterbury Christ Church University (UK), which supports teachers in bridging subject boundaries through a strategy called Classrooms with Permeable Walls.

54 You must be a member to download this article Things you should not believe in science

Keith S. Taber

This article considers the relationship between belief and learning science. It is argued that belief in science (as a process) needs to be distinguished from belief in particular scientific ideas and knowledge claims. Scientific knowledge is theoretical and provisional – something to be adopted for its utility, not as articles of faith. The scientific attitude is to always be sceptical and retain a critical attitude to what we think we know. Belief in scientific knowledge is not only inappropriate in terms of scientific values, but can also be unhelpful from an educational perspective. The science teacher should actually encourage students not to believe in the various theories, models and other products of scientific work presented in class. This approach can avoid conflicts with students’ personal beliefs, support scientific literacy, and better prepare future scientists.

61 You must be a member to download this article Evolution, insight and truth?

Emma Newall

Evolution has been positioned at the centre of conflict between scientific and religious explanations of the workings of the world. However, little research has examined other possible reasons for some people rejecting scientific explanations. The author’s research indicates that for some people, irrespective of faith, the ideas associated with evolution can be potentially disturbing: ideas about change, uncertainty, absence of purpose, extinction and struggle, as well as identity. The affective dimension of teaching and learning about evolution needs to be taken into account and our classrooms should provide safe places for our students to discuss the personal implications of science.

67 You must be a member to download this article Epistemic insight: teaching about science and RE in secondary schools

Tamjid Mujtaba, Michael J. Reiss and Alexis Stones

This article reports on a teaching intervention for year 9 or 10 students (age 13–15) in secondary school biology and religious education (RE) lessons that was partly intended to deepen students’ reflections, empathy and literacy when considering the similarities, differences and relationships between religion and science. The intervention proved to be generally successful in meeting its aims for the students and also led to a number of the participating teachers changing their views in ways that were more positive about the worth of examining such issues in the classroom.

Leave a Reply

Your email address will not be published. Required fields are marked *